Warning: A non-numeric value encountered in /home1/siedu/public_html/sercblog/wp-content/plugins/blackhole-bad-bots/inc/blackhole-ip.php on line 113
Shorelines Shorelines - Page 50 of 50 - Life and science at the Smithsonian Environmental Research Center add_filter('bloginfo_url', function($output, $property){ error_log("====property=" . $property); return ($property == 'pingback_url') ? null : $output; }, 11, 2);
 

$5 million grant from NOAA funds Chesapeake Bay research

Posted by Kristen Goodhue on November 10th, 2009

If the Chesapeake Bay could drive, it would have a severe case of road rage. The nation’s largest estuary is stressed out. That’s putting it mildly.

The Chesapeake Bay Watershed.  Landsat imagery courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey.

The Chesapeake Bay Watershed. Landsat imagery courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey.

Nutrient runoff, shoreline development and invasive species are just a few of the factors contributing to the Chesapeake Bay’s poor health. For decades, scientists at the Smithsonian Environmental Research Center (SERC) have been teasing out how these “stressors” impact the Bay’s plants and animals. A new $5 million grant from the National Oceanic and Atmospheric Administration (NOAA) will help bolster their efforts.
Click to continue »

Share
 

What one marsh tells us about rising CO2

Posted by Kristen Goodhue on October 27th, 2009

In the world of unassuming marshes, the Kirkpatrick Marsh stands apart. Smithsonian plant physiologist Bert Drake has studied this wetland for more than two decades. It’s located in Maryland, along the Rhode River, a sub-estuary of the Chesapeake Bay. Drake and his colleagues have used this community of grasses and sedges to explore whether plants have the potential to become a carbon source or a carbon sink. Watch the audio slideshow below, for a tour of the field experiment.

You can read more about Drake’s experiment on the Smithsonian Environmental Research Center’s Web site.

Share
 

Intern Logs: Methanogenesis and nail polish

Posted by Kristen Goodhue on October 27th, 2009

Q&A with David Gonzalez, 2009 Summer Intern
Major: Evolution, Ecology and Biodiversity
School: University of California-Davis, Class of 2011

Intern David Gonzalez poses with some of his <i>Phragmites australis</i> plants

Intern David Gonzalez poses with some of his Phragmites australis plants


What drew you to the Smithsonian Environmental Research Center?
The big-picture research that the scientists do here interested me, particularly the experiments relating to global climate change. Among other things, scientists of my generation are going to have to understand how climate change will impact organisms. We talk about it a lot in my classes, so it was cool to have the opportunity to have hands-on experience exploring some of these issues as an undergrad.

You were here for ten weeks. What was your research project about?

I worked on a global change project that examined the relationship between microbes in the soil and Common Reed, or Phragmites australis. Through a process called methanogenesis, the microbes produce methane, a powerful greenhouse gas, which the plants help to emit into the atmosphere. Because Phragmites australis is found in wetlands worldwide, it’s important to look at how its methanogenesis rates might be affected by global change. Basically we wanted to see if rising CO2 and nitrogen levels exacerbate the problem of methane emissions. So I spent the summer growing Phragmites australis under conditions of elevated CO2 and nitrogen and then measured the response of the microbes and plants.

Do you feel like you spent your summer being an active scientist?
Half of the summer I felt like a scientist; the other half I felt like a gardener. There were a lot of day-to-day chores like watering the plants, counting them, giving them fertilizer, and weeding them. I had to make sure these plants grew to the best of their ability in the short time we had to grow them.

So you learned about the challenges and realities of doing science?

A lot of things I learned this summer relate to how many little things go into doing scientific research – from going out and buying fuses for a machine when it broke down, to purchasing nail polish at a drug store so we could take a peel from a leaf to count stomatal density.

What exactly did you do with nail polish?
We used it in some pilot studies. You apply nail polish to the leaf, let it dry, put scotch tape on it, and then pull it off. This creates a kind of caste of the leaf that you can put on a microscope slide so you can examine a leaf’s cellular structure. For instance, we can go through and count the guard cells, which lets us figure stomatal density and helps us understand how the leaf is responding to the treatments we applied.

You were in the biogeochemistry lab. Did you interact much with the other labs at SERC?
Yeah, one of the great things about SERC is that you’re surrounded by scientists with all these different areas of expertise. I got a lot of help from the forest ecology lab; they let me use some of their instruments for measuring leaf area. But we also got to go on lab exchanges. I spent a day on the water with the “Crab Lab;” I helped them catch and tag blue crabs. And then I also spent a number of evenings setting up mouse traps in the forest with a friend who was interning in the Terrestrial Ecology Lab. In general, we were encouraged to find out what the other labs were up to, which I often did just by talking with the other interns.

What are the dorms like?
The Green Village is awesome. It has a kitchen, a common area and feels like a nice cozy dorm.

How much independence did you have?
Usually you put in eight hours of work a day; occasionally you work more. After that though, you’re free. We cooked dinners together in the evenings. Some of the interns had a garden with a behemoth of a basil plant – that made for a great pesto party. And then we spent weekends exploring the East Coast. I saw fireworks in Washington, DC, on the Fourth of July; camped in Shenandoah National Park; and swam in the Atlantic Ocean.

SERC's summer interns on a day-trip to the Shenandoah Valley

SERC's summer interns on a day-trip to the Shenandoah Valley


Was it difficult to get around?

A lot of the interns had cars. That was something I was worried about in the beginning, but everybody turned out to be really friendly. If you needed groceries, there were always people going to the grocery store. If you wanted to visit Washington, DC, it was easy to round up people to hit the Smithsonian Museums. The weekend excursions were great.

You’ll graduate in 2011. How do you want to use the knowledge you’ve gained here at SERC?
I’m definitely planning on doing more scientific research – maybe related to climate change, maybe not. Something that I’m very interested in is communicating the importance of environmental science to the general public and to policy makers. I want to be able to convey why it’s important to think about things like climate change, where your food comes from, farming practices, carbon emissions and things like that. That’s sort of my long-term interest – which I hope will go hand-in-hand with my future studies and research experiences.

Visit our web site for more information on internships and fellowships at the Smithsonian Environmental Research Center.

Share
 

Salad science: Coaxing caterpillars to reveal the secrets of their leafy desires

Posted by Kristen Goodhue on October 20th, 2009

Hold your chef’s knife Emeril. You too Wolfgang and Rachael Ray. Insect ecologist Eric Lind is in the kitchen. Toss him a handful of poison ivy or kudzu and he’ll whip up fare fit for…a caterpillar.

Lind is a postdoctoral research fellow in the Terrestrial Ecology Lab at the Smithsonian Environmental Research Center (SERC) on the Chesapeake Bay. Along with his advisor, John Parker, he’s trying to figure out the taste buds of the woolly bear caterpillar (Pyrrharctia isabella), a common insect herbivore in the Mid-Atlantic. Lind and Parker want to know if these fuzzy eaters prefer to chomp invasive or native plants. It’s a question related to biodiversity.

Ecologists around the world are concerned with preserving native plants and trees. In the temperate forest surrounding SERC about two thirds of the understory ground cover is comprised of non-native plants. Lind and Parker want to know if these exotic plants have a competitive advantage over native plant species, because woolly bears and other herbivores find them distasteful.

Testing caterpillars’ taste buds is no simple task. Just like your local salad bar, plants in the wild come in different shapes, textures and flavors. Herbivores rely on each of these cues to tell them what to eat. Deciphering this code is Lind’s task. He’s examining 40 different plant species – half invasive, half native.

First he measures the physical and nutritional elements of the plants. Then he isolates and tests the flavor alone.

To do this, Lind follows one master recipe. He’s actually tasted it, multiple times. It is equal parts cellulose, wheat germ, and then the key ingredient: carefully-extracted plant essence. He tosses in a pinch of agar, pours in boiling water, mixes and viola: plant paste aux poison ivy. Or mile-a-minute weed. Or kudzu. You get the point.

For each plant-flavored paste, Lind also prepares a plain version, minus the plant essence. This is his control. He spreads the mixtures into long, thin, molds and lets them firm up until they look and feel something like a fruit rollup. Then, Lind chops each rollup into pieces about the size of a thumbnail, roughly the amount of food a woolly bear eats in a day.

Now it is time for the hungry caterpillars to feast. Each woolly bear gets two carefully-weighed servings: one plant-flavored, one plain. They dine in the peace and quiet of a temperature-controlled incubator. When they’ve had their fill, Lind weighs the leftovers and records the data.

Lind’s data quickly piles up. When the feeding trials finish, he’ll begin the hard work of statistical analysis. Lind is careful not to make any predictions, “You can always convince yourself you see differences in the data. The question is whether or not they’re significant.” Caution-aside, Lind hopes this experiment will offer scientists a richer understanding of the relationship between exotic plants and the native herbivores that may or may not munch on them.

Share
 
Shorelines