add_filter('bloginfo_url', function($output, $property){ error_log("====property=" . $property); return ($property == 'pingback_url') ? null : $output; }, 11, 2);
 

Climate Change

...now browsing by category

 

Mangrove Tracking VI: Attack of the Beetles

Thursday, July 5th, 2012

by Jake Bodart

Beetle tunnel. This Scolytid beetle has burrowed into a mangrove seedling and lain its larvae inside. (Jake Bodart)

In science not everything goes according to plan. For example, half of your project’s experimental units might die before you start.

In the back of the Smithsonian Research Station here in Ft. Pierce, the mangrove team has built an artificial pond (we call it Lake Simpson) to raise mangrove seedlings that will be used in experiments. However, when we arrived here last month, we noticed that about half of the red mangroves were turning black and dying. It was unclear at first whether these mangroves were dying directly as a result of the artificial habitat (was our pond too hot? Too salty? Not salty enough?), or if the pond was somehow making the mangroves more susceptible to pest insects. We know from other studies that predation by insects can cause a large amount of propagule and seedling mortality.

Upon closer inspection, we decided insects were the culprit. The evidence of insect predation: small bore holes and little piles of frass (chewed up/excreted parts of the plant, a.k.a. insect poop). We decided to sacrifice the seedlings that were clearly infested, and dissect them to see if there were any insects inside.

Click to continue »

Share

Land Hurricanes: The Science Behind the Derecho

Tuesday, July 3rd, 2012

by Kristen Minogue

Derecho storm front over Nebraska in August 2007. (MONGO)

To say the tempests of June 29 took the U.S. by surprise would be an understatement. Near Annapolis, the storms jumped from a mild 10 miles per hour to 54 miles per hour in just five minutes. In other places 70- and 80-mile per hour winds tore through hulking trees and power lines. And yet the most violent part of the storm lasted less than half an hour.

“It all happened in a matter of minutes….I’ve never seen anything like it,” said ecologist Pat Neale, who tracked the wind speeds on SERC’s meteorological tower.

How could something so quick cause so much damage? And how would a storm like that form in the first place?

Click to continue »

Share

Mangrove Tracking V: A Maverick Crab

Wednesday, June 27th, 2012

Mayda Nathan/University of Maryland

Today we spotted a mangrove tree crab (Aratus pisonii) enjoying nectar from a black mangrove flower. It was surprising enough to find Aratus all over these black mangroves, at the very northern edge of the mangrove range in Florida; it was even more astonishing to see this one’s very un-crablike behavior! Aratus are known omnivores – consumers of mangrove leaves, propagules, insects, even other Aratus – but we’ve never thought of them as floral visitors. They are normally extremely shy, but this particular Aratus was so blissed out by its sugary meal that it didn’t mind (or notice) as we snapped pictures and gawked.

Mayda Nathan, graduate student (University of Maryland)

This material is based upon work supported by the National Science Foundation under Grant Number 1065098. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Share

Mangrove Tracking IV: Brush with Manatees

Tuesday, June 26th, 2012

by Dan Gruner

A manatee samples red mangrove leaves and its cigar-shaped propagules. Photo: John Parker

Our task this week was to begin “ground-truthing” locations on the map to evaluate them for suitability as field study sites. This was basic reconnaissance, otherwise known as exploring (or just mucking about). It’s always exciting to visit new sites. For me, recon missions recall childhood Christmas mornings, with the anticipation of finding treasure in the stacks of wrapped boxes under the tree. What treasure will we find in the marshes and mangroves?

Even with the tremendous leaps we’ve gained from satellite imaging, Google Earth and other technologies, experience on the ground (or in the water) is irreplaceable. Our team must build a network of sites along the lagoons and estuaries of the Florida coast, and ultimately the globe, to understand the causes and consequences of shifts in the range of tropical mangrove species. On this day we probed several mangrove and salt marsh estuaries along the Indian River Lagoon. We tested technologies allowing real-time exploration of satellite imagery while comparing that imagery to landscape and vegetation features we saw on the ground. This was GPS on steroids! By allowing us to optimize site selection and replicate sites all along the coast, these technologies will help us characterize the vegetation of the estuaries and how they’ve changed over time.

But that day our attention was drawn away from new technology to something much older (about 50 million years old): manatees. Click to continue »

Share

Mangrove Tracking III: The Glories of Field Work

Friday, June 22nd, 2012

Mangrove research is not glamorous work.

Researchers Lorae Simpson, Jake Bodart, Nancy Shipley and Mayda Nathan ford across a mangrove-surrounded pool. (Brian Thompson)


Don’t let the tropical locales and boat-to-work daily routine fool you; research in mangroves requires high tolerance for heat, biting bugs, dirt and wet. But the impenetrability of mangroves means that scientific understanding of this ecosystem has lagged somewhat behind other terrestrial environments. And this lack of information is like a magnet for ecologists.

Our team has descended on the Florida mangroves this summer to study the insects that live in and on them, the fish that find shelter among their submerged roots, the dietary choices of the crabs that live in their branches, their reproductive biology, and the interactions between the three mangrove species found here and their marsh plant neighbors. Taken together, our efforts will contribute to a better understanding of the communities that assemble as mangroves spread north into the northern Florida saltmarshes.

This means we spend some days struggling through thickets of mangroves, waist-high patches of pickleweed, and neck-deep pools of brackish water. In building up a research program, we’re building a lot of character, too.

More stories from the mangroves >>

-Mayda Nathan, graduate student (University of Maryland)

This material is based upon work supported by the National Science Foundation under Grant Number 1065098. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Share

Mangrove Tracking II: Invasive Lionfish

Monday, June 18th, 2012

by Cora Johnston

Red Lionfish. Photo: Jacek Madejski

This just in: Invasive and venomous lionfish (Pterois volitans) have just been spotted in mangroves along Florida’s Atlantic coast! We encountered two individuals of this invasive species (they’re native to the Indian and Pacific Oceans) while conducting snorkeling fish surveys along the Indian River Lagoon.

Click to continue »

Share

Aging Forests Better at Trapping Carbon

Friday, June 8th, 2012

by Kristen Minogue

Mysterious things happen to forests as they grow old. The passing of time alters the trees, the animals, the microbes, even how much they breathe.

Hemlock tree in Salt Springs State Park, Penn. Hemlocks are one of the last trees to populate a forest, and those forests seem to be better at storing carbon. (Nicholas_T)


Just like people, forests age. Dense rows of birch and cherry trees give way to tulip poplars. Eventually the tulip poplars vanish and more spacious oaks and hemlocks rise up in their place. But arguably the most important changes occur underground. The planet’s soils store more than three times as much carbon as the atmosphere. And—while researchers still aren’t sure exactly why—older forests seem to be better at holding onto it.

Click to continue »

Share

Mangrove Tracking I: A Forest on the Move

Wednesday, June 6th, 2012

by Dan Gruner

Black mangrove. Mangroves like this tolerate hot, salty environments partly by exuding excess salt onto their leaves. (John Parker)

Will tropical mangroves take over the world?

I don’t think anyone believes that will happen. However, it does seem that mangroves are moving up in latitude, encroaching into more temperate salt marsh systems dominated by cord grass and other herbaceous species. Although mangrove systems are in steep decline worldwide because of coastal development, aquaculture and other human activities, climate change and other factors may be increasing their total geographic range.

Why would this happen? What would this mean for coastal ecosystems in the USA and globally? And what would it mean for the billions of people who live within 20 miles of a coastal zone, or the billions more who rely on some form of oceanic protein?

Click to continue »

Share

The Underwater War on Climate Change

Monday, May 7th, 2012

by Kristen Minogue

The milky blue waters of this Iceland lagoon are teeming with cyanobacteria, also known as blue-green algae. (Marie-II)

Beneath the surface of the ocean, an invisible army of workers is fighting to keep climate change in check. Many have been silently absorbing or burying carbon for billions of years, and humanity has just begun to take notice of them. These unassuming laborers are bacteria.

Click to continue »

Share

Snowmageddon vs. Caribbean Creep

Monday, January 9th, 2012

by Monaca Noble

SERC's Green Village during Snowmageddon February 2010 (Stephen Sanford)

Remember Snowmageddon 2010, the east coast storms that dumped up to three feet of snow over the mid-Atlantic? The February snowstorm was the largest in the region in nearly 90 years, resulting in the heaviest snowfall on record for Delaware (26.5 inches) and the third heaviest snowfall in Baltimore (24.8 inches). The storm made a big impression on Dr. João Canning-Clode and other scientists at the Smithsonian Environmental Research Center, who began to wonder if the storm, and the December/January cold snap that preceded it, would lead to the deaths and potential disappearance of marine invaders from southern climates.
Click to continue »

Share
Shorelines