add_filter('bloginfo_url', function($output, $property){ error_log("====property=" . $property); return ($property == 'pingback_url') ? null : $output; }, 11, 2);
 

Climate Change

...now browsing by category

 

Firefighting planes are dumping ocean water on the Los Angeles fires − why using saltwater is typically a last resort

Monday, January 13th, 2025

by Patrick Megonigal, Associate Director of Research, Smithsonian Environmental Research Center. Originally published in The Conversation

Gray smoke billows from fires on a mountainside, as seen from above.
Flames of the Simi Valley Fire in October 2003 ravage a mountainside in Southern California. (Credit: Senior Master Sgt. Dennis W. Goff, U.S. Air Force)

Firefighters battling the deadly wildfires that raced through the Los Angeles area in January 2025 have been hampered by a limited supply of freshwater. So, when the winds are calm enough, skilled pilots flying planes aptly named Super Scoopers are skimming off 1,500 gallons of seawater at a time and dumping it with high precision on the fires.

Using seawater to fight fires can sound like a simple solution – the Pacific Ocean has a seemingly endless supply of water. In emergencies like Southern California is facing, it’s often the only quick solution, though the operation can be risky amid ocean swells.

But seawater also has downsides.

Click to continue »
Share

Six Stories From 2024 To Warm Your Heart (Not the Planet)

Friday, January 10th, 2025

by Kristen Goodhue

The year 2024 is set to go down as the hottest year on record since the mid-1800s (so far), shattering several additional records in its wake. Even for solutions-minded scientists like the ones we’re lucky to work with, there’s no denying it was a rough year for planet Earth. But that doesn’t erase the many bright moments and crucial steps forward that also marked the year.

At the Smithsonian Environmental Research Center (SERC), scientists have been finding new ways to sustain the Earth for the past six decades. This year the center will reach its 60th anniversary. To mark the occasion, we’ve rounded up our six favorite stories from 2024, from the groundbreaking and inspiring to the quirky and fun:

Click to continue »
Share

Biodiversity Makes Reefs Tick—But It Needs Big Players

Wednesday, February 2nd, 2022

by Kristen Goodhue

Underwater photo of silver fish swimming over a reef, with orange, pink, brown and white coral.
A school of yellowtail kingfish (Seriola lalandi) at Lord Howe Island in Australia. The presence of large fish like yellowtails can help keep ecosystems healthy and productive, a new study found. (Credit: Rick Stuart Smith, Reef Life Survey)

Three thousand reefs. (Technically 3,040 reefs, for those who like precision.) That’s how many underwater sites scientists and volunteers poured over in the latest effort to uncover how much biodiversity matters for reef health.

The answer: Quite a lot.

Scientists have known for years that diverse fish communities help ocean ecosystems flourish, even when facing rising temperatures and climate change. But the latest study, published in Nature Communications, reveals it’s about more than the numbers. Which species call a reef home can matter just as much as how many there are. And that holds especially true when it comes to large predator fish.

Click to continue »
Share

The Tides Are Turning: Rising Seas Threaten Coastal Wetlands

Friday, July 2nd, 2021

by Deva Holliman

Green wetland with blue patches of water

Coastal wetland in Parker River National Wildlife Refuge, Massachusetts. (Credit: U.S. Fish and Wildlife Service)

Between 43% and 48% of coastal wetlands along the continental U.S. may be unable to survive rising seas, according to a recent study from the Smithsonian Environmental Research Center (SERC).  

The study, published in the June issue of Earth’s Future, highlighted the capacity of coastal wetlands across the continental United States to resist sea level rise. While wetland plants are adapted to the stress of salty tides, sea level rise threatens to entirely submerge some sections of marsh—eventually causing these plants to die.  

The survival of wetlands is essential to the continued prosperity of coastal communities. Wetlands protect shorelines from damage by severe storms. They provide vital habitats for fish and shellfish that humans rely on for food, and support numerous endangered and endemic species. To many locals, wetlands also tie into their cultures and identities, and provide tourism revenue. 

“Our collective economic and cultural wealth is diminished if we don’t have tidal wetlands,” said SERC scientist James Holmquist, who spearheaded the study.  Click to continue »

Share

EQSphere invention measures greenhouse gases in cloudy, freezing waters

Friday, May 14th, 2021

by Marisa Sloan, Northwestern University

The EQSphere, a silver ball inside transparent container, with gray and blue tubes coming out of top

The silver EQSphere measures dissolved carbon dioxide and methane, potent greenhouse gases, in the Rhode River on a rainy afternoon. (Photo: Marisa Sloan/Northwestern University)

Don’t be fooled—the EQSphere™ isn’t a silver softball or a tree ornament gone rogue. It’s a spherical equilibrator invented to continuously yank carbon dioxide, methane and other gases from three feet underwater into the air to be measured in real time.

Whitman Miller, a research scientist with the Smithsonian Environmental Research Center, came up with the design with his head technician Amanda Reynolds while they were studying the effects of elevated carbon dioxide in marine ecosystems. He considers it an invention born of necessity, thanks to turbid and debris-ridden coastal waters, where it’s dangerous to deploy expensive instruments for very long.

Click to continue »

Share

How the “Blue Methane” Team Used COVID Restrictions To Get More Data Than Ever

Thursday, April 15th, 2021

by Kristen Minogue

Three scientists in masks taking measurements in a wetland

Erika Koontz (right) pauses for a selfie with Shelby Cross (left) and Kyle Derby (center) while doing methane sampling in Maryland’s Jug Bay, one of the few sites she could visit in-person during the pandemic. (Credit: Erika Koontz)

This article is part of a series of posts highlighting research the Smithsonian Environmental Research Center is continuing to do amid the COVID-19 pandemic, and adaptations its staff have been making in a more socially distant world.

Like many scientists, Erika Koontz was hired for a specific project. She had just begun a job as a technician with the Smithsonian Environmental Research Center’s Biogeochemistry Lab. Her new supervisor, James Holmquist, had an ambitious goal in mind: Uncover how wetlands across the U.S. store—or emit—the powerful greenhouse gas methane. They called it the Blue Methane project.

“It’s a dataset that’s really never been attempted before, to be housed under one single project,” Koontz said. During field season, Koontz would visit wetlands on the East, West and Gulf Coasts, sampling methane in their porewater and measuring the flux of methane into and out of their soils.

Koontz started her job in March 2020. Enough said on that subject.

The next six months were some of the busiest of her life.

Click to continue »

Share

TEMPEST Experiment Mimics Future Storms Inside Forests

Monday, December 7th, 2020

by Aliya Uteuova

Woman standing with outstretched arms on one of four giant grey tanks, with an orange ladder propped up beneath her.

Postdoc Anya Hopple stands atop freshwater tanks for the new TEMPEST experiment. Each tank can hold 10,000 gallons of water, which will saturate forest soils to simulate heavy rainfall events. (Credit: Rick Smith)

Heavy rainfall and storm surges rank among the most common natural-weather events in the United States. They can occur in every state. They’re also one of the most widely felt impacts of climate change, making it impossible to ignore the economic and physical harm they leave in their wakes.

In a forest at the Smithsonian Environmental Research Center (SERC), scientists are working to uncover how sudden deluges could impact forests in decades to come. Called TEMPEST, the new experiment will mimic intense freshwater rainstorms and saltwater storm surges by inundating parts of the forest.

Click to continue »

Share

Sharks Tags Reveal Endangered Species Returning To Natural Refuge

Wednesday, November 18th, 2020

by Kristen Minogue

In the coastal waters of the mid-Atlantic, an endangered shark is making a comeback. Led by former Smithsonian postdoc Chuck Bangley, scientists at the Smithsonian Environmental Research Center (SERC) tagged and tracked nearly two dozen dusky sharks over the course of a year as part of the Smithsonian’s Movement of Life Initiative. They discovered a protected zone put in place 15 years ago is paying off—but it may need some tweaking with climate change.

Dusky sharks are what Bangley calls “the archetypal big, gray shark.” Born three feet long, as babies they’re already big enough to prey on some other shark species. But they’re slow growing. It can take 16 to 29 years for them to mature. If their populations take a hit, recovery can take decades.

The sharks’ numbers plummeted in the 1980s and 1990s, when well-intentioned managers offered sharks as an “alternative fishery” while other stocks, like cod, were collapsing. The overfishing that followed wiped out anywhere from 65 to 90 percent of the Chesapeake’s duskies, said Bangley, now a postdoc at Dalhousie University in Nova Scotia. Managers banned all intentional dusky shark fishing in 2000. Five years later, they created the Mid-Atlantic Shark Closed Area encompassing most of the North Carolina coast. The zone prohibits bottom longline fishing, which can accidentally ensnare dusky sharks, for seven months of the year.

But is the partial refuge working?

Click to continue »

Share

Global “BiteMap” Reveals How Marine Food Webs May Change With Climate

Monday, October 26th, 2020

by Kristen Minogue

Blue and yellow fish approaching stick in sandy, turquoise water

A yellowtail fish approaches a “squid pop” in the coastal waters off Mexico. By planting squid pops (stakes with dried squid bait) in coastal waters around the world, ecologists were able to sketch a global “BiteMap” of fish feeding. (Credit: Brigitta van Tussenbroek/Universidad Nacional Autónoma de México)

Where are small marine animals most vulnerable to getting eaten? The answer has big consequences for coastal ecosystems, where most of the world’s fishing takes place, since predators can radically change underwater communities. In a new study published in Proceedings of the National Academy of Sciences Oct. 26, an international team of scientists sketched the first global “BiteMap” showing where the ocean’s mid-sized predators are most active. By fishing with dried squid baits called “squid pops,” they discovered rising temperatures can shape entire communities of predators and have potential impacts lower down the food web.

“We know that communities around the world are changing with climate warming,” said Emmett Duffy, co-author on the paper and director of the Smithsonian’s Marine Global Earth Observatory program. But while warmer temperatures generally increase animal activities like eating, researchers are only just starting to grasp what those changes mean for marine ecosystems as a whole. “We might expect a soccer team, for example, to perform better in warm weather than in really cold conditions. But what if in the warmer conditions, the team switches out for different players? That can completely change the game.”

Click to continue »

Share

When Forests Grow Back Naturally, Climate Change Takes A Hit.

Friday, September 25th, 2020

by Aliya Uteuova

Mountain forests with red, purple, yellow and green foliage.

Fall color in the Dolly Sods Wilderness, part of Monongahela National Forest in West Virginia. “Natural forest regrowth,” a climate-mitigation strategy where forests regrow without human interference, could store 1.6 billion metric tons of carbon annually. (Credit: Kent Mason)

Trees have a powerful ability to absorb carbon dioxide, and a lot of it. According to the Environmental Protection Agency, American forests offset about 12% of the carbon emissions the U.S. creates each year from fossil fuels. While it’s great to plant trees, it can be costly. It’s also important to plant the right species in the right places to avoid disrupting other ecosystems. A major new study published Sept. 23 highlights the potential of an alternate strategy—natural forest regrowth—which can soak up excess carbon and help mitigate climate change.

Click to continue »

Share
Shorelines