Parasite Hunting

...now browsing by category

Tracking the exploits of Katrina Lohan and Kristy Hill, two marine biologists scouting for microscopic oyster parasites from Chesapeake Bay to Panama.

 

Parasites and Suicidal Shrimp

Wednesday, August 21st, 2013

By Katie Sinclair

A grass shrimp infected with a trematode parasite (photo: Sara Gonzales)

A grass shrimp infected with a trematode parasite (photo: Sara Gonzalez)

While the idea of playing host to something out of the movie Alien is decidedly unpleasant, it’s hard not to marvel at theexquisite grossness of microscopic parasites. Parasites take advantage of their hosts for resources and shelter, but research on parasites suggests that they also can manipulate their hosts’ behavior: Crickets will drown themselves, snails position themselves to be eaten by birds, and some theories suggest that cat-lovers infected with the parasite Toxoplasma gondii become self-destructively reckless.  More than half the known species in the world are parasites—making parasitism the most popular lifestyle on Earth.

At the Smithsonian Environmental Research Center (SERC), the Marine Invasions Lab has been tracking parasites in grass shrimp, an incredibly common near shore species. Rates of parasitism are extremely high in grass shrimp, with some years 90 percent of the shrimp caught displaying parasite infection. The most common parasite is a trematode that forms cysts in the tail of the shrimp. Sara Gonzalez, who interned with SERC this summer, wanted to see if parasitized shrimp displayed different predator avoidance behaviors than unparasitized shrimp. Because the trematode only reproduces in birds and mammals, the parasite must find a way to make its way up the food chain. Sara suspected that infected shrimp will change their behavior  in a way that makes them more vulnerable to predators like mummichogs. The parasite does not infect the mummichogs directly, but mummichogs are prey for mammals and birds. If a mummichog that has ingested an infected shrimp gets eaten by a bird or mammal, then the parasite will be able to reproduce.
Click to continue »

From the Field: Oysters from Chincoteague

Tuesday, July 16th, 2013

by Katrina Lohan, Smithsonian postdoc

Kristy Hill and Michelle Repetto hunt for oysters on an exposed marsh in Chincoteague Bay. (Katrina Lohan)

Kristy Hill and Michele Repetto hunt for oysters on an exposed marsh in Chincoteague Bay. (Katrina Lohan)

For our final sampling site, we headed north to Chincoteague Bay. Edward Smith, our boat captain, had made sure to find a location that wasn’t currently leased to a local fisherman. He was confident we would find oysters, but he wasn’t sure about mussels or clams.

For some additional manpower, three summer interns from the Eastern Shore Laboratory accompanied us. Our sampling location was adjacent to Wallops Island, a NASA facility. We got to work as soon as Edward stopped the boat. Edward and the interns started raking for clams, while the rest of us grabbed oysters and mussels from the exposed marsh.

The mud here was also thick and deep! Once we had all the oysters and mussels necessary, Kristy and Michele aided in the search for clams while I recorded all the necessary metadata and took sediment and water samples. When the tide started to come in we had to halt our sampling efforts. Though we didn’t find as many clams as we wanted, we had enough to make processing them worthwhile. It was a great time for our final collecting trip of the season!

View full series on hunting for oyster parasites >>

From the Field: Accident in a Storm Surge

Friday, July 12th, 2013

by Katrina Lohan, Smithsonian postdoc

On Friday, we jumped in the boat for a quick ride to a nearby oyster reef just outside the inlet at Wachapreague. Unfortunately for us there was a storm surge of a few feet, so the area that should have been completely exposed at low tide was still mostly underwater. Our boat captain, Edward Smith, took one look around and told us to hurry, as we probably only had one hour to collect all the bivalves we needed.

Edward and two summer interns started to rake for clams, while Michele, Kristy and I headed for oysters and mussels. It was slow going as the water was mucky and the mud was thick. It was a bit of a leg workout!

I collected at one site and then moved on to the next when I heard Michele yell for me that she had cut her leg on an oyster and needed to head back to the boat. She left her collecting bags so Kristy knew where she had been, and she and Kristy switched out at that location. After I had gotten all I needed, I got back to the boat as fast as I could, while still treading slowly and cautiously through the turbid waters. Thankfully, Michele’s cut wasn’t bad and she was able to clean it out with the first aid kit on board. Next time, we are wearing waders!

More stories of oyster and parasite hunting >>

From the Field: Thunderstorm!

Wednesday, July 10th, 2013

by Katrina Lohan

Rainbow over the marsh at Wachapreague, Va., following a storm. (Katrina Lohan)

Rainbow over the marsh at Wachapreague, Va., following a storm. (Katrina Lohan)


A pretty impressive thunderstorm rolled through one night while we were in Wachapreague. We were so close to finishing that we decided to push through and cross our fingers that the power didn’t go out. Michele and Kristy started cleaning up the lab as soon as they finished processing all of the samples for DNA analysis; however, I still had a few more that I needed to scan under the microscope for metazoan parasites.

It was a little eerie to watch the sky darken and hear the wind, especially when the lights in the lab kept flickering. I contemplated stopping, but I had already dissected all of my samples. It took about 30 more minutes, but I was able to finish up and then we made a mad dash for our rooms in the dormitory. While the power stayed on in the lab, the dorms weren’t so lucky.

As soon as the storm was over, we headed out to dinner at a local restaurant. The view over the marsh was spectacular—rainbows everywhere!

From the Field: Microscopic Parasites

Monday, July 8th, 2013

by Katrina Lohan

Microscopic slide of a mussel parasite called a trematode. Trematodes often infect small aquatic animals, like mussels or snails, in hope of getting eaten by a larger host they can infect later. Viewed under 400x magnification. (Katrina Lohan)

Microscopic slide of a mussel parasite called a trematode. Trematodes often infect small aquatic animals, like mussels or snails, in hope of getting eaten by a larger host they can infect later. Viewed under 400x magnification. (Katrina Lohan)

Just as in previous trips, part of our sampling involved dissecting the bivalves and preparing tissue preps to view under the microscope. I have to admit that the microscopic metazoan parasites that I saw on this trip were not quite as exciting as previous trips—I miss the really cute turbellarians (a.k.a. Urostoma sp.)! Though they weren’t as cute, I did see some parasites through the microscope, including trematode metacercariae in the mussels, three marine mites, a handful of pea crabs and free-swimming harpacticoid copepods. I had never seen a marine mite before and at first thought there were ticks running around the lab. That’s what happens when you spend hours in front of a microscope–you forget how small the things you are viewing actually are!

From the Field: Clam Shucking

Wednesday, July 3rd, 2013
Michelle Repetto shucks a hard clam (Mercenaria mercenaria) using a device borrowed from the VIMS Eastern Shore Laboratory. (Katrina Lohan)

Michelle Repetto shucks a hard clam (Mercenaria mercenaria) using a device borrowed from the VIMS Eastern Shore Laboratory. (Katrina Lohan)

by Katrina Lohan

If you have ever tried to open M. mercenaria, then you can fully appreciate that the folks at the ESL gave us a specially designed apparatus just for shucking clams. Even then, the clams we collected were pretty big, so getting them open was really hard.

A co-worker from the Marine Invasions Lab, Michele Repetto, joined Kristy and I on this trip and she has become a master shucker. Between Kristy and Michele’s excellent shucking capabilities, the large clams didn’t stand a chance. Now the mussels on the other hand presented a separate challenge, which was attempting to get them open without destroying the shells, which we are archiving and will eventually submit to the molluscan collection at the National Museum of Natural History.

While I frequently broke the mussel shells into many pieces, Kristy and Michele had the appropriate finesse to open the mussels without causing massive shell damage. Have to enjoy the challenges of working with different species!

From the Field: Oysters from Oyster

Tuesday, July 2nd, 2013

by Katrina Lohan

Seaside Hall at the VIMS Eastern Shore Laboratory, where Katrina Lohan and Kristy Hill spent most of their time taking samples from bivalves. (Katrina Lohan)

Seaside Hall at the VIMS Eastern Shore Laboratory, where Katrina Lohan and Kristy Hill spent most of their time taking samples from bivalves. (Katrina Lohan)

The end of our field season (if you call half a year a field “season”) is coming to an end as we now head for our sampling location in the Chesapeake Bay. Our northernmost sampling location is Wachapreague, Va., located on the Delmarva Peninsula and home of the Eastern Shore Laboratory (ESL) of the Virginia Institute of Marine Science (VIMS).

Kristy and I are both alumnae of the College of William and Mary and conducted our graduate research at VIMS. For my Ph.D., all of my fieldwork was conducted at the ESL, so returning as a postdoc, working on a different disease system, is a little surreal for me. It has been nice to catch up with the folks at this lab and see the new buildings, which were still in preparation when I graduated. How time flies!

Before venturing out on this particular trip, we contacted our collaborator Ryan Carnegie of the Shellfish Pathology Lab at the Virginia Institute of Marine Science to get some suggestions about sampling location. He suggested sampling oyster reefs at Mockhorn Channel just off Oyster, Va., as they had historical data from that area. The folks at the ESL knew just where to take us and we headed out on Tuesday to collect.

In previous locations we aimed to collect three oyster species. However, there is only one oyster in the Chesapeake Bay: Crassostrea virginica, the eastern oyster. So we decided to collect other bivalves: the ribbed mussel (Geukensia demissa) and the hard clam (Mercenaria mercenaria).

Our boat captain, Edward Smith, suggested that we split up so that we could complete the collection prior to the tide coming in. I ended up on the high marsh searching for mussels, which was super muddy and, consequently, lots of fun! It was beautiful weather and just windy enough that the bugs stayed away. Once all the mussels and oysters were collected, we all headed to a mud flat to rake for clams. I have to admit that I am horrible at finding clams. While Edward found more than 30 clams, I found three….Good thing that others were better than me or we would never have found enough. Then it was back to the lab to figure out how to shuck them all!

From the Field: Sea Wall Scraping Round II

Wednesday, June 19th, 2013

by Katrina Lohan

Sherry Reed (in pink) and Kristina Hill pick through clumps of oysters removed from the seawall at the Harbor Branch Oceanographic Institute. (Katrina Lohan)

Sherry Reed (in pink) and Kristina Hill pick through clumps of oysters removed from the seawall at the Harbor Branch Oceanographic Institute. (Katrina Lohan)

For our final sampling location we chose another seawall, at the marina at the Harbor Branch Oceanographic Institute. I had never been there before and the campus is beautiful! Driving into the marina from the Indian River Lagoon, the inlet is lined with mature mangrove trees, which also surround the entire marina. It was fairly windy that day, so the ride over was choppy, but once inside the inlet, the water was calm and the breeze was almost indiscernible.

It was my job to hold the boat against the seawall while Kristy and Sherry hammered oysters off the wall. I also kept track as they called out numbers of Ostrea sp.—we didn’t bother counting Crassostrea virginica because they were everywhere! Unfortunately for us, there were no Isognomon sp. along the wall, which we all found odd given that this habitat was so similar to the seawall we had previously sampled, where we found that species.

After about an hour of sampling, we were all wishing for the breeze! Without that breeze, the sun intensity felt more brutal and it was stiflingly hot. Once we had enough C. virginica and Ostrea sp. we drove around to a few other spots within that inlet to see if the Isognomon sp. were more localized, but no luck. I wanted another sediment sample from this site, but it was too deep along the wall, so Sherry found a spot in the mangroves that wasn’t too dense. I hopped out of the boat and took my sediment and water samples. I started looking for Isognomon sp. on the mangrove branches, but only found a handful… We had one last look on the rocks on our way out of the inlet, but no luck there either. Bummer! Well, two out of three species isn’t too bad!

From the Field: A Day Off?

Tuesday, June 18th, 2013

by Katrina Lohan

When Kristy and I go on these sampling excursions, we generally pack in a lot of sampling and processing into a short amount of time. We work every day, including weekends, and average 11-12 hour workdays for the two-week timeframe. So you can imagine our surprise when we finished processing all of the oysters from the second sampling location and realized that we had time in this trip for a day off!

What do two marine biologists do on their day off in Florida? Go to the beach! We inquired with the local staff as to the best place to go and were told that the Florida Inlet State Park beach was preferred as they had bathrooms and showers. We took the advice and headed to the beach for a day of R&R. I realized while sitting on the beach, mesmerized by the pounding of the waves, that it doesn’t take much for me to remember why I wanted to be a marine biologist. I am still awed by the power of water, watching the waves roll into the shore, crest, then fall, pounding into the sand and churning the shell fragments, turning them into smaller and smaller bits. I still stare at the ocean with wonder, imagining the vast and curious creatures that live in a world so completely different from the one that is familiar to me. Having these moments helps me to rejuvenate, so I can get back in the lab, continue processing my samples, and, hopefully, add to the body of knowledge about the ecology and evolution of marine creatures.

From the Field: Oyster Parasites Through a Microscope

Thursday, June 13th, 2013

by Katrina Lohan

Microscopic cysts inside a Crassostrea virginica oyster. (Katrina Lohan)

Microscopic cysts inside a Crassostrea virginica oyster. (Katrina Lohan)

In addition to taking oyster tissue to test for the presence of protistan parasites, we are also analyzing the oyster tissue for larger, but still microscopic, parasitic species such as worms, trematodes, and copepods. We have found parasites in all the species examined in all the locations we have traveled, but I got the best pictures of critters observed in oysters in Florida!

The highest prevalence and density of parasites occurred in Crassostrea virginica oysters. So far, I have seen copepods, turbellarians (probably Urostoma sp.), pea crabs, gill parasites, and cysts (probably from cestodes). I even saw what looked like a fish embryo, which was probably just brought into the gills, and an insect larva. Seeing all these critters under the microscope has made me contemplate why oysters are considered an aphrodisiac!