add_filter('bloginfo_url', function($output, $property){ error_log("====property=" . $property); return ($property == 'pingback_url') ? null : $output; }, 11, 2);
 

SERC Sites and Scenes

...now browsing by category

 

How Clay Caterpillars Help Unlock Biodiversity’s Secrets

Friday, July 22nd, 2016
Anna Nordseth surveys clay caterpillars for damage in BiodiversiTREE plot

Anna Nordseth surveys clay caterpillars for predation damage in BiodiversiTREE plot (Credit: Emily Li/SERC)

by Emily Li

Anna Nordseth, a summer intern for the Smithsonian Environmental Research Center’s Terrestrial Ecology Lab, wasn’t surprised to be taking work home the first week and a half of her internship. What she wasn’t expecting was to be making nearly a thousand clay caterpillars.

Each caterpillar began life as a half gram of green clay, with a wire spine and ends rolled into a worm-like silhouette. By the time Nordseth had finished—several podcasts and three seasons of House of Cards later—she had 900 caterpillars and the hand cramps to prove it. But she was ready to begin her research.

Click to continue »

Share

Q&A: Preparing a Safety Net for Native Plants

Monday, July 18th, 2016
Tony Dove in the garden pond in front of the SERC Administration Building

Tony Dove in the garden pond in front of the SERC Administration Building. (Photo: Emily Li/SERC)

by Emily Li

What do we do when native plants lose? About five years ago, the Smithsonian Environmental Research Center and the U.S. Department of Agriculture joined forces to back up seed sources of native plant species, just in case something threatens to wipe them out—but for some species, it looks like we might need them sooner rather than later. Learn more about the partnership and the pros of gardening with natives in this edited Q&A with Smithsonian Environmental Research Center horticulturalist Tony Dove.

Can you tell me about the native sentinel plant species partnership between SERC and the Department of Agriculture?

The Department of Agriculture has a woody plant germplasm conservation center in Beltsville. And what they do is they go around to different locations throughout the country and they collect seeds of various native plants. They grow those native plants in a nursery with the expectation that they will then take those plants and put them out into landscapes in different areas, so that there will always be a seed source for those particular plants if something tragically happens in the area where those plants grew.

Click to continue »

Share

Cranking Up the Heat in the “Wetland of the Future”

Friday, June 24th, 2016

by Joe Dawson, SERC research aide

Last fall, while volunteering in a plant lab at George Washington University in D.C., I heard about an experiment that was starting up at the Smithsonian Environmental Research Center (SERC). The project, a global warming simulation in the wetlands surrounding the Chesapeake Bay, was helmed by SERC research ecologist Roy Rich, an ecologist with an engineer’s mindset. I’ve been a wetlands enthusiast since I spotted my first blue Heron as a kid, and global climate change is, in my mind, the most pressing issue humans face today. I was ready to sign up. I met with Roy and asked the same questions I have since answered over and over again since joining the project in November:

Joe Dawson kneels by a control box on marsh

Joe Dawson checks a control box for the underground heating cables that help raise temperature in the marsh plots. (Kristen Minogue/SERC)

“You’re heating up a swamp?” Yes.

“And adding CO2?” Yes.

“In a greenhouse?” No.

“Out in the open?” Yes.

“Umm, how?” Well…

Click to continue »

Share

Citizen Science: How to Hunt for Crabs (And Their Parasites)

Wednesday, June 8th, 2016

by Maria Sharova
SERC citizen science program assistant

Two SERC staff on docks

Maria Sharova (right) sifts through oyster shells in search of tiny mud crabs with intern  Caroline Kanaskie. (Monaca Noble/SERC)

I started working at the Smithsonian Environmental Research Center (SERC) one year ago this month. It had only been two weeks since I graduated from college with a bachelor’s degree in anthropology. Like any recent grad, I was excited and nervous to start my first real job—and, frankly, I wasn’t entirely sure what to expect.

During my first week of work, I was involved with the Chesapeake Bay Parasite Project (a.k.a. the Mud Crab Project), a project that looks at the impact of an invasive, parasitic barnacle called Loxothylacus panopaei (“Loxo” for short) on native white-fingered mud crabs in the Chesapeake Bay. Like most of our volunteers, I’d never heard of either of these organisms, I had no idea why the project mattered, and I’d never been involved in any kind of ecology research before. I had no idea Loxo was able hijack a mud crab’s reproductive system, forcing them to nurse parasite larvae instead of crab larvae. Nor had I ever searched through crates of oyster shells looking for mud crabs the size of a quarter or smaller, as our volunteers were about to do. But in no time at all, I’d become an experienced mud crab finder!

Maria’s Pro Tips for Citizen Scientists

Click to continue »

Share

Why volunteer: Shaping the Future as an Environmental Educator

Thursday, April 21st, 2016

by Jan Payne Wilson

Volunteers come in a great variety of ages, gender, talents and reasons for volunteering. Here’s my short story.

Growing up in Nature

I grew up in the Pacific Northwest and am of a generation that was lucky enough to be able to leave the house after school or on Saturday mornings to play outside for hours with the other neighborhood kids. We made hiding places in scotch broom thickets, climbed on fallen logs, wandered in the woods, had bracken fern spear fights and in the short, sweet summers spent time at a local beach on Puget Sound. It was idyllic, but at the time I took it all for granted.

Click to continue »

Share

Amphibian Congregation: Sonic Songs of Spring

Wednesday, March 30th, 2016

by Heather Soulen

Sonic Cacophonies

American Toad (Photo: Tyler Bell)

American Toad (Photo: Tyler Bell)

It’s that time of year when much of the mid-Atlantic is waking up from a long winter’s slumber. Flowers are blooming, trees are budding, ospreys and eagles are nesting, and frogs are calling. Right now, the Smithsonian Environmental Research Center (SERC) is alive with the sonic cacophony of a two amphibians. Spring peepers (Pseudacris crucifer) and American toads (Anaxyrus americanus, formerly Bufo americanus) are shouting mating anthems from every available pocket of water. If you live east of the Mississippi River from Canada to Florida, you’ve likely heard their calls. But which is which? We’ve collected a few sound bites around SERC to help identify each amphibian’s call.

Click to continue »

Share

DNA Offers New Hope for Saving Orchids

Thursday, March 24th, 2016

by Kristen Minogue

Melissa McCormick with cranefly orchid

Melissa McCormick kneels over a cranefly orchid. (Yini Ma)

The secret is in the soil. In one of the oddest couples in the natural world, orchids need fungi to grow. But finding those fungi can be tricky, until a new study from the Smithsonian Environmental Research Center (SERC) used DNA to find them in more places than anyone suspected.

There are 14 federally endangered or threatened orchids in the U.S. alone, and dozens more are endangered or threatened at the state level. Figuring out how to restore any single species is difficult, because there are so many different kinds.

“You’re talking about the largest plant family in the world,” said Melissa McCormick, lead author and SERC molecular ecologist. Orchids grow from islands off Antarctica to the Arctic Circle and just about everywhere in between. “They grow in darn near every environment on Earth.” But for all their diversity, the planet’s 26,000-plus known orchid species have one thing in common: None can germinate in the wild without a suitable fungus. Click to continue »

Share

The Everyday Naturalist: Fishing Spiders

Thursday, February 11th, 2016

by Jan Payne Wilson, SERC Volunteer

Six-spotted fishing spider (Dolomedes triton). Credit: Derek Ramsey

Six-spotted fishing spider, Dolomedes triton. Credit: Derek Ramsey

My dad was uncomfortable around spiders. Today we’d probably say he had a phobia. To deal with it, he found a spider-like creature, the Daddy Long Legs, and learned how benign and beneficial it was. From then on, he could focus on a “good spider” rather than his fear. As a child, I was indoctrinated with the knowledge that a Daddy Long Legs 1) could not bite you and 2) performed good deeds by eating “bad” spiders and other biting, child-frightening insects. Furthermore, they needed our help because they had delicate legs that easily broke off, so we moved them out of dangerous areas and avoided stepping on them. When I was older my father revealed that Daddy Long Legs weren’t actually spiders. Unlike true spiders, they can’t make silk and have neither fangs nor venom. From my father I learned that understanding a creature often changes fear into appreciation and, sometimes, amazement.

On the docks of the Smithsonian Environmental Research Center (SERC), I use my dad’s strategy to help students who either fear spiders or believe the only good spider is a dead spider.  With Daddy Long Legs it’s easy.  But we also have large spiders we don’t see as frequently: fishing spiders.  When you see your first fishing spider, it’s a hard sell to believe she’s got redeeming characteristics. Click to continue »

Share

Top 12 Highlights of 2015: Arctic Sailing, Cownose Rays and an Orchid Showdown

Thursday, December 31st, 2015

by Kristen Minogue

It’s been another wild year at the Smithsonian Environmental Research Center. We sent a sailboat to the Arctic, pitted our orchids in a showdown against the Hope Diamond and discovered a couple new species. And somewhere along the way we celebrated the center’s 50th anniversary. Scroll below for the 2015 #YearInReview, a collection of the top 12 stories, journeys and biggest surprises of 2015.

Image: Cownose Rays (Credit: SERC/Laura Patrick)

Cownose Rays (SERC/Laura Patrick)

Exploring the Ocean

Totes Adorbs! Cownose Rays Take Internet
These marine heartthrobs have earned a top billing. Besides making a 900-mile migration every year, which SERC marine ecologists are tracking with acoustic tags, the kite-shaped rays (whose mouths are stretched so that they seem to be wearing a perpetual smile) also won a Twitter #CuteOff in September.

What Does Life in the Ocean Sound Like?
Postdoc Erica Staaterman listens to the ocean for a living. Often seen as a silent landscape broken only by whale or dolphin songs, Staaterman is helping uncover a wealth of noise from the ocean’s hidden creatures. She shared some of the recordings with us in this edited Q&A.

Cruising the Arctic’s Forgotten Fjords
Ocean acidification researcher Whitman Miller sent one of his CO2-monitoring devices on a 100-day journey to the Arctic. Its mission: Venture to some of Greenland’s never-before-seen fjords and discover how melting glaciers are changing the water. And do it all in a small, 42-foot sailboat. Click to continue »

Share

Phragmites vs. Climate Change: Invasive Reed Better at Taking Up Carbon

Tuesday, December 22nd, 2015

by Kristen Minogue

Image: Josh Caplan holds Phragmites. (Credit: Tom Mozdzer)

Ecologist and lead author Josh Caplan holds a Phragmites plant at the Global Change Research Marsh. Invasive Phragmites can grow up to 15 feet tall. (Thomas Mozdzer)

One of the Chesapeake’s least favorite invaders could end up being an unlikely savior. The invasive reed Phragmites australis, a plant that has exploded across Chesapeake wetlands in the last few decades, is also making those wetlands better at soaking up carbon, ecologists from the Smithsonian Environmental Research Center (SERC) and Bryn Mawr College discovered in a new study.

The common reed, better known as Phragmites australis, grows in dense clusters up to 15 feet tall. North America has several native strains that have co-existed peacefully with many other native plants for at least 30,000 years. It is the invasive strain that arrived from Eurasia in the 1800s that has scientists and environmental managers worried. Eurasian Phragmites grows taller and denser than North American Phragmites, crowding out many smaller plants, and blocking access to light and nutrients. These changes in plant community have a ripple effect on animals that rely on wetlands for habitat.

“The fish communities, the insect communities, the soil and invertebrate communities, all these things change when Phragmites comes in,” says lead author Josh Caplan, a Bryn Mawr postdoc and visiting scientist at SERC. Often, those changes aren’t for the better. “Phragmites is doing a number to these ecosystems.” Click to continue »

Share
Shorelines