oysters

...now browsing by tag

 
 

NOAA Grant Funds Hypoxia and Acidification Research in the Chesapeake Bay

Monday, August 9th, 2010
Denise Breitburg holding net and standing in water surveying animals.

SERC senior scientist Denise Breitburg will lead the NOAA-funded study of hypoxia and acidification in the Chesapeake Bay.

Marine ecologist Denise Breitburg and her colleagues have thought up many novel ways to investigate the impacts of dead zones and acidification on Chesapeake Bay fish and invertebrates. Among their ideas: attaching tiny transmitters to fish and monitoring their movement in relation to oxygen and pH levels. A new $1.4 million grant from the National Oceanic and Atmospheric Administration will enable them to pursue this experiment and a host of others.
Click to continue »

Hypoxic waters: Researching beyond the surface to understand the impact on fisheries

Friday, March 19th, 2010

Two summer interns in a boat measuring the water's dissolved oxygen.

Two summer interns measure the water's dissolved oxygen concentrations. Water is typically considered hypoxic if oxygen concentrations are below 2mg/L. Photo: Courtney Richmond

Habitat destruction comes in many forms. The obvious include the clear-cutting of forests and the removal of mountaintops. Then there is the damage that’s less visible, like hypoxia.

In coastal waters around the world there are more than 500 hypoxic zones. These are areas where dissolved oxygen concentrations are so low that they threaten fish, invertebrates and aquatic food webs. Some fish manage to escape hypoxic areas, but oysters, clams and other sessile creatures are simply stuck.

Hypoxia makes the evening news when there’s a noticeable fish kill. However many of its effects are more subtle. Individuals that fail to escape low oxygen zones can suffer mortality or reduced growth and reproduction. Creatures that flee can become easy targets for fishermen and predators.
Click to continue »