add_filter('bloginfo_url', function($output, $property){ error_log("====property=" . $property); return ($property == 'pingback_url') ? null : $output; }, 11, 2);
 

Invasive Species

...now browsing by category

 

How Scientists Responded to Cannibalism, and the Surprising Comeback of California’s Most Unwanted Crab

Friday, July 9th, 2021

by Marissa Sandoval

Young woman on dock holds up a green crab

Julie Gonzalez, a graduate student at the University of California, Davis, holds up an invasive European green crab. (Credit: SERC)

In an artificially created estuary near San Francisco Bay, called Seadrift Lagoon, a very real problem arose when European green crabs (Carcinus maenas) arrived in the 1990s. After taking up residency, the invasive species population grew immensely as the crabs feasted on Dungeness crabs, clams, and oysters—a grim problem for the native animals and migratory shorebirds that rely on them.

The stark situation demanded major intervention. In 2009, researchers from the Smithsonian Environmental Research Center (SERC)’s Marine Invasions Lab, the University of California, Davis, and Portland State University partnered to eradicate the local European crab population through intensive trapping.

But their efforts accidentally led to even more green crabs. Now, over a decade later, the teams who addressed the problem head-on have published a paper in the Proceedings of the National Academy of Sciences on what they learned from a conservation effort gone awry. Led by Ted Grosholz of the University of California, Davis, the new study advocates for major caution when working with invasive species whose life history is similar to European green crabs. Click to continue »

Share

What’s Inside Invasive Plants Might Be Helping Them Survive And Spread

Wednesday, October 7th, 2020

by Aliya Uteuova

Deer steps out of green understory

A white-tailed deer browses for food in the forests of the Smithsonian Environmental Research Center. (Credit: John Parker/SERC)

For years, scientists have attempted to unravel why some invasive plants escape the grazing of hungry herbivores.

It turns out, the chemical makeup of some invasive plants protects them from being eaten. In a new paper, scientists have taken a closer look at invasive plant species in forests of the Smithsonian Environmental Research Center (SERC) in Maryland. In the new study, published in the August issue of Ecology and Evolution, they found that five common plant invaders have a chemistry just quirky enough to make animals like deer and insects avoid them. The results suggest that their strange chemistry has helped fuel some successful invasions into SERC’s Maryland forests.

Click to continue »

Share

Plastic Cleanup Expedition Helps Research Stay Afloat During Pandemic

Friday, September 4th, 2020

by Isabella Eclipse

Yellow buoy floating in water, with bottom covered in barnacles and a diver taking photos behind it.

Plastic buoy in the Great Pacific Garbage Patch, colonized by gooseneck barnacles and crabs. (Credit: Justin Hofman/Greenpeace)

This article is part of a series of posts highlighting research the Smithsonian Environmental Research Center is continuing to do amid the COVID-19 pandemic, and adaptations its staff have been making in a more socially distant world.

In nature, adaptation is key to survival. This year more than ever, being adaptable and resilient has also been essential to working as a scientist. Faced with a pandemic, researchers around the world have had to find creative ways to continue their work.

SERC postdoc Linsey Haram is part of the FloatEco Project, a research collaboration that studies artificial ecosystems made of floating ocean plastic. By hitchhiking on pieces of plastic, coastal organisms can drift into the Great Pacific Garbage Patch and survive in the middle of the ocean.

Click to continue »

Share

The Invisible Flood: When We Can’t Tell We’re Drowning

Tuesday, June 18th, 2019

by Quinn Burkhart

Most people need to visit the ocean to get their sea water fix. But beneath their feet, those waters may already be closer than they think. “Saltwater intrusion,” which occurs when the sea level rises and pushes large amounts of saltwater onto the coast, is one of the most prominent—and least talked about—effects of climate change. Its influence on the Chesapeake Bay, one of the lowest regions in the United States, is gaining traction.

Click to continue »

Share

Invader ID Volunteers Are Deploying Tiles in Chesapeake Bay

Monday, June 3rd, 2019

By Stephanie Fox

Each year, thousands of invasive organisms cling to the bottoms of boats, traveling hundreds of miles to distant bays. It’s proven difficult and time consuming for scientists to investigate all the harbors being invaded. So researchers at the Smithsonian Environmental Research Center (SERC) are looking to citizen scientists for help.

Over the last year, volunteers assisted from the comfort of their homes, helping identify invasive species using images online. But this summer, a small group of Invader ID volunteers will get their hands dirty doing experiments of their own in the Chesapeake Bay. Click to continue »

Share

Galápagos Islands Have 10 Times More Alien Marine Species Than Once Thought

Thursday, March 28th, 2019
View of dock on San Cristobal Island

A cargo dock on San Cristóbal Island in the Galápagos. Manmade structures like docks can help non-native marine species thrive by providing a hard surface to grow on. (Inti Keith/Charles Darwin Foundation)

More than 50 non-native marine species have found their way to the Galápagos Islands, over 10 times more than scientists previously thought, reports a new study in Aquatic Invasions published Thursday, March 28.

The study, a joint effort of the Smithsonian Environmental Research Center, Williams College, and the Charles Darwin Foundation, documents 53 species of introduced marine animals in this UNESCO World Heritage Site, one of the largest marine protected areas on Earth. Before this study came out, scientists knew about only five. Click to continue »

Share

These Creatures Crossed the Pacific on Plastic Tsunami Debris. Now, a New Struggle for Survival.

Tuesday, January 29th, 2019
Black mussels, pink barnacles and other sea creatures on buoy

Mediterranean mussels, acorn barnacles and anemones crossed the Pacific on this buoy found in Long Beach, Washington, in February 2017. (Photo: Nancy Treneman)

by Kristen Minogue

On March 11, 2011, a 125-foot tsunami struck Japan’s Tōhoku coast, triggered by a massive earthquake just hours earlier. The cost in human life and property damage was devastating. When it receded, it set in motion another chain of events—one scientists are still watching unfold eight years later. It’s a story of millions of pieces of plastic that journeyed across the ocean, and the plants and animals that rafted with them.

Click to continue »

Share

War of the Periwinkles

Tuesday, October 9th, 2018

by Philip Kiefer

There’s a war of attrition playing out on the coastlines of the San Francisco Bay that is in a ponderous class of its own. A tiny snail, called a rough periwinkle (Littorina saxatilis), might be pushing its native counterpart, the checkered periwinkle (Littorina scutulata), from the beaches it once called home. But no one is quite sure why, or even how quickly it’s spreading.

Someone looking down at a handful of snails, on a beach.

Adrielle Cailipan examines a handful of invasive periwinkles. (Philip Kiefer/SERC)

Adrielle Cailipan, a recent graduate of San Francisco State University, is spending her summer internship in the world of periwinkles with the West Coast Lab of the Smithsonian Environmental Research Center (SERC). She’s working not only to document the spread of the rough periwinkle, but also to understand what makes the invader so successful.

Click to continue »

Share

Invasive Plants Can Boost Blue Carbon Storage

Monday, October 1st, 2018

by Kristen Minogue

Green marsh banks alongside river on a cloudy day

Some invasive plants like Phragmites australis, the light-brown stalks on this Maryland marsh, could more than double the ability of marshes and other coastal ecosystems to store blue carbon. (Credit: Gary Peresta/SERC)

When invasive species enter the picture, things are rarely black and white. A new paper has revealed that some plant invaders could help fight climate change by making it easier for ecosystems to store “blue carbon”—the carbon stored in coastal environments like salt marshes, mangroves and seagrasses. But other invaders, most notably animals, can do the exact opposite.

Click to continue »

Share

New Invasive Bryozoan Arrives in Alaskan Waters

Thursday, September 27th, 2018

By Philip Kiefer

Alaska has a near-pristine marine ecosystem: There are fewer invasive species in its waters than almost any other state in the U.S. But that could be changing. With help from local volunteers, biologists at the Smithsonian Environmental Research Center (SERC) and Temple University have reported a new invasive species in the Ketchikan region, the invertebrate filter-feeder Bugula neritina, and documented the continuing spread of three other non-native species.

A branching animal, shaped like a bunch of pine needles.

The newly discovered invasive bryozoan, Bugula neritina. (Melissa Frey/Royal BC Museum)

Ketchikan, a town of about 8,000 people on the southern tip of Alaska, is a gateway to more remote Alaskan waters in the north. It sits fewer than 100 nautical miles from British Columbia, so invasive species travelling from southern ports are likely to appear in Ketchikan first. But detecting marine invasive species is a constant challenge, even in a single harbor. By collaborating with citizen scientists from Ketchikan, Smithsonian researchers were able to document these new invasive species hopefully as soon as they arrived.

Crab covered in orange tunicate

The invasive tunicate Botrylloides violaecus has nearly completely covered this crab’s shell. (Gary Freitag/University of Alaska Fairbanks)

“It’s really important to know when new non-native species show up. They may be tiny invertebrates, but they can create big problems,” said lead author Laura Jurgens, who was a SERC postdoc at the time of the study. “Early detection means you have a better chance of controlling them before the populations get established. In other places, like California, Oregon and Washington, these organisms have displaced local marine animals or had economic impacts by fouling boats, fishing or aquaculture gear.”

Click to continue »

Share
Shorelines