Fisheries

...now browsing by category

 

The Crab Tow Tango

Monday, July 29th, 2013

by Katie Sinclair

Brooke and Paige get ready to deploy the tow.

Brooke and Paige prepare to deploy the tow.

There is a certain art to the deployment of a crab tow. This brown metal and net contraption, about three feet long and a foot wide, scrapes over the bottom in search of juvenile blue crabs. Fitting three people, two coolers, a selection of buckets and bins and the tow in a 16-foot jon boat is something akin to a giant game of Tetris. Successfully launching and recovering the crab tow without smacking anyone in the face or knocking anything overboard requires practiced choreography and grace.

With a one-two-three, the metal tow hits the water with a splash. After 300 feet, lab tech Paige Roberts gracefully maneuvers the jon boat backwards and forwards to retrieve the tow. Paige captains the jon boat a bit like a fighter pilot—precision is required to coax the unwieldy boat around shoals, patches of sea grass and oblivious jetskiers. Click to continue »

From the Field: Oysters from Chincoteague

Tuesday, July 16th, 2013

by Katrina Lohan, Smithsonian postdoc

Kristy Hill and Michelle Repetto hunt for oysters on an exposed marsh in Chincoteague Bay. (Katrina Lohan)

Kristy Hill and Michele Repetto hunt for oysters on an exposed marsh in Chincoteague Bay. (Katrina Lohan)

For our final sampling site, we headed north to Chincoteague Bay. Edward Smith, our boat captain, had made sure to find a location that wasn’t currently leased to a local fisherman. He was confident we would find oysters, but he wasn’t sure about mussels or clams.

For some additional manpower, three summer interns from the Eastern Shore Laboratory accompanied us. Our sampling location was adjacent to Wallops Island, a NASA facility. We got to work as soon as Edward stopped the boat. Edward and the interns started raking for clams, while the rest of us grabbed oysters and mussels from the exposed marsh.

The mud here was also thick and deep! Once we had all the oysters and mussels necessary, Kristy and Michele aided in the search for clams while I recorded all the necessary metadata and took sediment and water samples. When the tide started to come in we had to halt our sampling efforts. Though we didn’t find as many clams as we wanted, we had enough to make processing them worthwhile. It was a great time for our final collecting trip of the season!

View full series on hunting for oyster parasites >>

Stomachs, Ear Bones and Electrofishing: Dissecting the Invaders

Friday, June 28th, 2013

By Katie Sinclair

SERCterms Mark and Brooke weigh and measure a bluecatfish.

SERC interns Mark and Brooke weigh and measure a blue catfish.

Ever wonder what a catfish eats? The blue catfish, invasive to the Chesapeake, is not a picky eater.

This voracious predator eats pretty much anything that can fit in its mouth.  By digging into their stomachs, a process vaguely reminiscent of high school biology classes, researchers can figure out the impact this species has on the ecosystem.

 In order to get some fresh catfish stomachs, researchers working in the Fish and Invertebrate Lab at SERC set up a “Gon’ fishing” sign and hit the field.

 Using a technique known as “electrofishing,” researchers stun the fish with electric currents in the water and collect them from several sites along the Chesapeake and rivers that feed into the Bay. Once the fish are caught, they place them into a cooler. The frozen fish are then identified by species, weighed and measured. Each fish varies tremendously: From a few ounces to over 10 lbs., a wide range of maturities and sizes are represented.

Paige and Mike begin to dissect the fish.

Paige and Mike begin to dissect the fish.

 A closer look at the stomach

A closer look at the stomach

The ecologists then remove the fish’s stomach,  taking great care to keep it intact. (Though frozen, the contents of a fish’s lower intestines tend to have a rather unpleasant smell). As fishermen know, gutting catfish can get messy, especially when the interns get involved.

Click to continue »

Mystery of the Missing Blue Crabs: Winter vs. Summer Young

Tuesday, June 25th, 2013

Republished with permission from the Blue Crab Blog. Check out the Blue Crab Blog for the latest news regarding Maryland’s favorite crustacean.

By Katie Sinclair, Guest Blogger and Intern at the Smithsonian Environmental Research Center
crabpic
The blue crab may be the most well-known denizen of the Chesapeake Bay, with the blue crab fishery one of the most productive in the region. From the late 1990s to mid-2000s, the blue crab population was in decline, with a near record low population of blue crabs recorded in 2008. The cause of this decline is not fully known, but is most likely a combination of overfishing, habitat loss, poor recruitment, and poor water quality.

Since new regulations on crab harvesting, particularly those restricting the harvest of mature females, were put in place in 2008, the population of blue crabs has increased significantly. However, a low number of juveniles were caught in the winter dredge this year, leading to a gloomy forecast for the number of harvestable blue crabs for the 2013 season.

During my summer internship at the Smithsonian Environmental Research Center (SERC), I want to investigate if this forecast is coming true. The winter dredge survey, an extensive bottom trawl survey that catches blue crabs overwintering at the bottom of the bay, is impressive for its scale and precision. The survey takes into account 3 different regions of the bay, and 1500 sites are surveyed. The data are used to calculate crab density and from that project overall crab abundance. The 2013 winter dredge survey found markedly lower numbers of juvenile crabs (crabs smaller than 2.4 in) than in previous years.  One of the key questions regarding the survey, however, is just how closely the observed winter population of juveniles correlates with the actual number of blue crabs that survive to the summer.

One of the main issues with using the juvenile index from the winter dredge survey to predict future abundance of adult blue crabs is that it does not take into account survivorship of juvenile crabs, which can vary widely from year to year. Blue crabs are competitive and cannibalistic, and a large proportion of juvenile blue crab mortality can be attributed to predation by blue crabs themselves. Using the juvenile index to predict future adult abundances does not take into consideration interactions between adult and juvenile blue crabs—a low number of juveniles could in fact be the result of increased predation pressure from the adult population. Longer term research conducted at SERC has indeed shown that mortality of juveniles is related to the density of adult crabs.

Over this summer, research will be conducted to determine how adult and juvenile abundances from the winter dredge survey correlate with the actual numbers of blue crabs observed in the summer. Crabs will be collected by net tows and their abundance and size will be recorded. Similar research conducted last summer showed that the high numbers of juvenile blue crabs found by the 2012 winter dredge survey had vanished by the summer.

Hopefully for crab-lovers, the future low abundance of crabs projected by the low juvenile index of the winter dredge survey will be found to be too low. Recruitment rates for blue crab are known to fluctuate wildly, and survivorship of larvae to juveniles depends on multiple factors: salinity, temperature, dissolved oxygen, and predation. The winter dredge report did show an increase in mature females, which suggests that management strategies designed to protect fecund females are in fact working.

Research done at SERC comparing crab abundance and mortality brings to light interesting questions regarding the overall dynamics of the blue crab populations. The comparison of observed crab abundance in the summer to the juvenile index from the winter dredge report will help us determine how accurate the juvenile crab index is at predicting future crab abundances. Studying the population dynamics of blue crabs can help us understand and preserve this valuable natural resource.

Blue crabs decline–but recovery still on track

Tuesday, April 30th, 2013

by Matt Ogburn and Tuck Hines

Photo: Smithsonian Environmental Research Center

Photo: Smithsonian Environmental Research Center

To some following the blue crab recovery, the news earlier this month may have come as a shock. In 2012, the Chesapeake-wide Winter Dredge Survey estimated a record 764 million blue crabs in the Bay—the highest seen since 1991. Juvenile crab densities jumped to their highest levels ever. Then the 2013 survey released April 19 saw both those numbers drop.

Managers greeted the dwindling juvenile population with some depression. But those numbers may not matter as much, according to biologists Tuck Hines and Matt Ogburn of the Smithsonian Environmental Research Center. Ecologists at SERC have been tracking blue crabs for more than 30 years, almost a decade before the winter dredge survey began. They’ve discovered the population that really needs watching is the spawning females. Here is what the numbers are telling us:

Click to continue »

Once an invasive, always an invasive?

Thursday, April 4th, 2013

by Monaca Noble and Paul Fofonoff

The European green crab has been on the east coast of the U.S. since 1817. (SERC)

The European green crab has been on the east coast of the U.S. since 1817. (SERC)

The title question was raised by one of the readers of last month’s feature story on green crabs (Carcinus maenas). The reader asked, “If the green crab was first seen here [the East Coast of the US] in 1817, is it still considered an invasive species 200 years later? How far back do you go to claim something is invasive vs. native?” Several groups of people have drawn their own lines in the sand, but we wanted to examine current thoughts and perceptions. The following article is based on views expressed in a recent listserve discussion.

The term invasive was used in the green crab article because the crab is on the list of the world’s 100 worst invasive species. But it is also commonly used as a synonym of introduced. Which brings us to the importance of terms and definitions.

As one respondent pointed out, there are different interpretations of the term “invasive.” Some people define invasive in terms of a species’ ecological impact or behavior, while others use it to refer to a species’ origin, and sometimes both are part of the definition. If a species’ characterization as invasive is based only on its ecological behavior, then it is possible for a species to be both native and invasive. But if the species’ origin is part of the definition, then only nonnative species can be invasive. Others add another dimension to the word by making the mode of introduction important. Species can be spread naturally through dispersal and/or through human-mediated transport. Some people use invasive in reference to human-mediated introductions of nonnative species. Unfortunately, when we hear the word “invasive” we rarely know the definition behind it.

But whether something is considered invasive appears to be largely a matter of perception rather than just definition, and there are many contributing factors that muddy the water. Most responses from the discussion fell into three perception categories represented by these questions:

1) Do we benefit from the species, or is it harmful?

2) Is the species part of what we consider the natural landscape?

3) Is the species native?

Maybe our problem is that we view nature in the time frame of a biologist’s career-span.”

Click to continue »

From the Field: One Final Search

Tuesday, February 26th, 2013

by Katrina Lohan

Sunset from the dock at the Bocas del Toro Marine Station, Smithsonian. (Katrina Lohan)

Sunset from the dock at the Bocas del Toro Marine Station, Smithsonian. (Katrina Lohan)

We had very little trouble finding two of the oyster species we needed at three different places. But with only three days left in our trip, we had yet to find Ostrea sp. at more than one location. With our hopes high, we headed toward Portobelo to see if we could find a saline river-like environment that had Ostrea sp. in high enough abundance for us to sample. The drive was gorgeous! We drove along the Atlantic Coast of Panama and stopped at five separate “rivers”, though most of them were pretty small and should probably be called streams instead. We also briefly drove into Portobelo so that we could drive past the old Spanish forts in the city.

We only found Ostrea sp. at one of the rivers, and we didn’t find enough to sample there. Our final stop on our way back to Naos was the French Canal. We had borrowed an inflatable canoe from Mark Torchin, which took us about 20 minutes to pump up. Once we did, we were able to get the canoe into the water and used it to more closely investigate what oysters were growing on the bridge pilings. We had our fingers crossed that it would be Ostrea sp. but, alas, it was Crassostrea sp. instead. Well, I can’t be too upset. While we didn’t get the ideal sampling we were hoping for, it was still a very successful trip!

Next month we head to Merida, Mexico to continue our sampling adventures. Stay tuned!

Complete parasite-hunting stories from Panama >>

From the Field: A Day’s Work

Monday, February 25th, 2013

by Katrina Lohan

Kristina Hill investigates a mangrove root at Rio Alejandro, Panama, to determine what kinds of oysters are living on it. (Katrina Hill)

Kristina Hill investigates a mangrove root at Rio Alejandro, Panama, to determine what kinds of oysters are living on it. (Katrina Lohan)

The day after arriving in Panama City, we went out into the field to continue collecting. During our trip in December, we had sampled two locations on the Atlantic side of the Canal. Now we had to complete our sampling for the three genera we had been sampling in Bocas. So we headed out to an area near Colon, Panama, and rented a boat for a few hours to go find oysters in the mangroves. We were successful at finding all three species at one location and two of the three species at another location. Not bad for a single morning.

From the Field: The Language Barrier

Monday, February 25th, 2013

by Katrina Lohan

We were able to find a final location for Ostrea sp. in Bocas del Toro, which wrapped up our sampling there. So it was time to return to Panama City to complete our sampling on the Atlantic side of the Panama Canal.

Now I have been trying to learn and remember some Spanish phrases. There were times when my lack of fluency was awkward, and other times when it is more problematic. Our return trip to Panama City was one of the problematic occasions!

Click to continue »

From the Field: An “Unglamorous” Sampling Site

Thursday, February 21st, 2013

by Katrina Lohan

Life underwater. Fire coral, anemones, sponges and a diverse group of oysters cling to a dock at the Smithsonian's Bocas del Toro Marine Station. (Kristina Hill)

Life underwater. Fire coral, anemones, sponges and a diverse group of oysters cling to a dock at the Smithsonian's Bocas del Toro Marine Station.
(Kristina Hill)

To satisfy our sampling scheme, we needed one more location with all three genera present. The dock at Bocas del Toro wasn’t the most glamorous location to sample, but it was an amazing place to snorkel around. There were many bivalve species and an abundance of individuals for each species located on the pilings. There were lots of different fish, coral, hydroids and sponges. It was beautiful! We decided to make this our third sampling location as it was easily accessible and had all three species–or so we thought.

We know oysters are tricky to morphologically identify, as they have such a wide range of growth patterns. It wasn’t until we were back in the lab and had shucked a few of the oysters open that we realized what we thought was Ostrea sp. in the field was actually a different species, Dendostrea frons. Oops…