Publications

...now browsing by category

 

Phragmites vs. Climate Change: Invasive Reed Better at Taking Up Carbon

Tuesday, December 22nd, 2015

by Kristen Minogue

Image: Josh Caplan holds Phragmites. (Credit: Tom Mozdzer)

Ecologist and lead author Josh Caplan holds a Phragmites plant at the Global Change Research Marsh. Invasive Phragmites can grow up to 15 feet tall. (Thomas Mozdzer)

One of the Chesapeake’s least favorite invaders could end up being an unlikely savior. The invasive reed Phragmites australis, a plant that has exploded across Chesapeake wetlands in the last few decades, is also making those wetlands better at soaking up carbon, ecologists from the Smithsonian Environmental Research Center (SERC) and Bryn Mawr College discovered in a new study.

The common reed, better known as Phragmites australis, grows in dense clusters up to 15 feet tall. North America has several native strains that have co-existed peacefully with many other native plants for at least 30,000 years. It is the invasive strain that arrived from Eurasia in the 1800s that has scientists and environmental managers worried. Eurasian Phragmites grows taller and denser than North American Phragmites, crowding out many smaller plants, and blocking access to light and nutrients. These changes in plant community have a ripple effect on animals that rely on wetlands for habitat.

“The fish communities, the insect communities, the soil and invertebrate communities, all these things change when Phragmites comes in,” says lead author Josh Caplan, a Bryn Mawr postdoc and visiting scientist at SERC. Often, those changes aren’t for the better. “Phragmites is doing a number to these ecosystems.” Click to continue »

A Crossword Puzzle with Ecology Flair

Monday, December 21st, 2015

Enjoy our Smithsonian science-based crossword puzzle in celebration of Crossword Day. Words for this puzzle were derived from our blog posts in 2015. Stumped? Search our blog posts for additional clues or click the Reveal Letter button for help. Good luck and may the force be with you!

Online version: http://crossword.info/Soulenfish/Ecology_Flair_Final

Ecology Crossword FINAL #3

 

 

 

 

Restrictions in Seaweed Agar-vate Scientists

Thursday, December 17th, 2015
Bivalves from Panama for Dermo disease study

Bivalves from Panama for Dermo disease study

by Heather Soulen

Last week Nature magazine published a news piece about how supplies of agar, a research staple in labs around the world, are dwindling. Agar is a gelatinous material from red seaweed of the genus Gelidium, and is referred to as ‘red gold’ by those within the industry. Insiders suggest that the tightening of seaweed supply is related to overharvesting, causing agar processing facilities to reduce production. Most of the world’s ‘red gold’ comes from Morocco. In the 2000s, the nation harvested 14,000 tons per year. Today, harvest limits are set at 6,000 tons per year, with only 1,200 tons available for foreign export outside the country. In typical supply and demand fashion, distributor prices are expected to skyrocket. As a result, things could get tough for scientists who use agar and agar-based materials in their research.

Agar is a scientist’s Jell-O. Just like grandma used to make Jell-O desserts with fruit artfully arranged on top or floating in suspended animation within a mold, scientists use agar the same way. Bacteria and fungi can be cultured on top of nutrient-enriched agar, tissues of organisms can be suspended within an agar-based medium and chunks of DNA can move through an agarose gel, a carbohydrate material that comes from agar. Agar and agar products are the Leathermans of the science world.

Click to continue »

The Blue Carbon Market is Open

Wednesday, November 25th, 2015

New report enables creation of carbon credits for restored wetlands

by Kristen Minogue

SERC's Global Change Research Wetland (SERC)

SERC’s Global Change Research Wetland (Credit: SERC)

How much is a wetland worth?

It’s a question that has plagued policymakers, scientists and other leaders looking to protect their communities and slow down the pace of climate change. For the first time, thanks to a new report released Tuesday, scientists have a method to calculate how much greenhouses gas emissions a restored wetland can offset that can be used anywhere in the world–which will allow the creation of carbon credits. Click to continue »

Resurrecting the Floodplain

Monday, November 23rd, 2015

by Kristen Minogue

Image: SERC Intern Julianne Rolf stands in the streambed of Muddy Creek. Erosion has caused it to drop 10 feet below its floodplain. (Credit: SERC)

SERC Intern Julianne Rolf stands in the streambed of Muddy Creek. Erosion has caused it to drop 10 feet below its floodplain. (SERC)

In the forests of Edgewater, Md., a stream called Muddy Creek is sinking. By itself this is hardly news. The Chesapeake’s ailing streams span thousands of miles, and the watershed’s states have devoted hundreds of millions of dollars towards trying to restore them. It’s part of a gargantuan effort to clean up the Chesapeake. Sick streams create a sick bay, and environmental managers are anxious to stem the nutrient and sediment overload from streams. But for all the zeal surrounding stream restorations, their success rate hasn’t always lived up to the hype. How effective can they be—and what do they need to succeed?

Fortunately, this stream happens to be under the watch of scientists. And the restoration of Muddy Creek may yield some answers. Click to continue »

Methane Packs More Punch Than We Thought. But So Does Getting Rid of It.

Monday, November 16th, 2015

by Kristen Minogue

Image: Frozen methane bubbles in an Alaska lake. When icy permafrost thaws, microbes are able to consume the carbon stored there and turn it into methane gas. (Credit: Miriam Jones/USGS)

Frozen methane bubbles in an Alaska lake. When icy permafrost thaws, microbes are able to consume the carbon stored there and turn it into methane gas. (Miriam Jones/USGS)

We’ve underestimated greenhouse gases. Not carbon dioxide, arguably the most famous greenhouse gas except water. But others, like methane, are less abundant but more powerful in terms of trapping heat. And our figures about that have probably skewed low.

Carbon dioxide (CO2) comprises a staggering three-fourths of global greenhouse gas emissions, making it a major driving force behind climate change. But methane (CH4), long locked in Arctic permafrost, is escaping as ice thaws. Methane also enters the atmosphere via natural gas, livestock, coal mining, oil and even wetlands.

For years scientists and policymakers have reported that methane is roughly 30 times more powerful than CO2 over a century. This fall, two biogeochemists tested a more accurate model and discovered the true figure is far higher – more like 45 times more powerful than CO2.

The good news? Taking methane out of the atmosphere makes an even bigger difference than putting it in. Click to continue »

All About That Base…Pairs: Using DNA Barcoding to Identify Fish Gut Contents

Tuesday, November 10th, 2015

by Heather Soulen

Rob Aguilar takes photos of all DNA barcoding reference specimens collected in the Chesapeake Bay

Rob Aguilar takes photos of all DNA barcoding reference specimens they collect in the Chesapeake Bay

Rob Aguilar of SERC’s Fish and Invertebrate Ecology Lab co-authored a DNA barcoding paper this past September in the journal Environmental Biology of Fishes. Rob spoke with us about his paper and the DNA barcoding work going on in the Fish and Invertebrate Lab. While the term DNA barcoding may seem difficult to understand, it’s easiest to think about it as a uniquely identifiable species level code.

Click the sound file below to listen to the interview.

Additional barcoding details are available in the full podcast transcript.

Click to continue »

The Dark Side of Taxonomy: Part Three

Saturday, October 31st, 2015

The Devil You Know

by Heather Soulen

In our last installment of The Dark Side of Taxonomy, we’ve saved one of the most fear inducing scientific names for last. We wouldn’t have done due diligence this Halloween season if we didn’t mention him. In this piece we present a small collection of organisms that in some instances have suffered the same etymological fate – a scientists with a proclivity for dark humor. Here we spotlight organisms that carry the infamous name of an angel who fell from grace.

 

Click to continue »

The Dark Side of Taxonomy: Part Two

Friday, October 30th, 2015

by Heather Soulen

Darker Still

Delving deeper into the dark side of taxonomy, we forge forth into the ether to uncover obscure and wickedly inspired scientific names. What’s in a scientific name? As described in The Dark Side of Taxonomy: Part One, some scientific names for organisms have dark and twisted origins. In part two of this three-part series, we peek behind the thin gauze-like veil, fearlessly sifting through time and lore to deliver a new collection of gruesome scientific names. Here we share ancient tales of Greek mythology, an Italian literary genius from the Middle Ages and the unforgiving Underworld.

Click to continue »

Remembering Hurricane Katrina by Studying Marshes of the Future

Friday, August 28th, 2015

by Heather Soulen

The Need for Healthy Marshes

Ten years ago, on August 28, 2005, Hurricane Katrina nicked south Florida and entered the heat-charged waters of the Gulf of Mexico, transforming from a Category 1 hurricane into a super-charged Category 5. In the early morning hours of August 29, it ripped through Louisiana and Mississippi. Thousands died, and hundreds of thousands of homes and businesses were destroyed. Today, much of the Louisiana and Mississippi coasts, and its people, are still recovering from the devastation.

When Katrina hit, some coastal marshes east of the Mississippi River lost approximately 25 percent of their area. In the decade that followed, salt marshes and wetlands in Louisiana have continued to disappear in some places, but not others. The scientific community soon zeroed in on keeping marshes healthy, since, as one scientist remarked “A healthy marsh is pretty resilient, A stressed marsh – storms will physically break the marsh down.” Marshes and wetlands are ecologically and economically important ecosystems. During storms they act like buffers, reducing storm surge and flood damage, but only if they’re healthy. The question is, what factors make a marsh strong or weak?
Click to continue »